

Ткаченко В.Н. Электрохимическая защита *трубопроводных сетей* / Учебное пособие.2-е изд., перераб. и доп. М.: Стройиздат, 2004.-320с.

В популярной форме представлена процессы электрохимической коррозии и защиты (ЭХЗ) как проблема теории токов в земле для сложных трубопроводных сетей с неоднородными параметрами (сетевая задача).

Даны рекомендации по методам коррозионных изысканий, подготовке исходных данных для расчета сетевой задачи как сугубо практической, описаны комплексы компьютерных программ АРМ-ЭХЗ-6П и АРМ-ЭХЗ-7П с подробным теоретическим и методическим обоснованием.

Приведены многочисленные примеры инженерного решения сетевой задачи для ситуаций, ранее не поддававшихся численному анализу. Показаны возможности предлагаемого метода при расчете арматурных сетей железобетонных сооружений, сложных контуров заземлений и других стержневых конструкций, как частных случаев сетевой задачи.

Предназначена для студентов и инженерно-технических работников в области проектирования, наладки и эксплуатации ЭХЗ подземных трубопроводов и сооружений.

Таблиц - 43, иллюстраций - 78, библиография - 36.

Оглавление

Оглавление	3
Предисловие	8
Глава1. Проблемы коррозии и защиты	10
1.1. Коррозионные потери	-
1.2. Классификация процессов коррозии	11
1.3. Классификация методов защиты	14
1.3.1.Коррозионностойкие материалы	-
1.3.2.Изолирующие покрытия	15
1.3.3.Электрохимическая защита	19
1.3.4. Прочие виды защиты	22
1.4. Нормы и правила	23
1.5. Развитие науки о коррозии и защите	25
Глава 2. Процессы электрохимической коррозии	28
2.1. Первопричины коррозии	_
2.2. Движущая сила токов коррозии	30
2.2.1. Гальванопара на поверхности металлического	
сооружения	_
2.2.2. Гальванические микронеоднородности	31
2.2.3. Коррозионные макропары	36
2.3. Факторы коррозии	39
2.4. Потенциал и ток коррозии	41
2.5. Показатели коррозионного разрушения	44
2.5.1. Скорость коррозии в соответствии с законом Фарадея.	-
2.5.2. Экспериментальное определение скорости коррозии	45
Глава 3. Коррозионная диагностика	. 47
3.1. Задачи коррозионных исследований	-
3.2. Определение агрессивности грунта	48
3.2.1. Метод удельного электрического сопротивления грунта.	50
3.2.2. Метод катодной поляризации.	52
3.3. Определение анодных зон в поле токов коррозии	53
3.3.1. Метод градиента потенциала	53
3.3.2. Метод выносного электрода	55
3.3.3. Трехэлектродный метод.	56
3.4. Электроизмерительные приборы и оборудование	. 58
3.4.1. Электроды сравнения	-
3.4.2. Электроизмерительные приборы	59
3.4.3. Прерыватели тока.	60
3.4.4. Трассоискатели и дефектоскопы	-
3.5. Компьютерный анализ поля токов коррозии	61
Глава 4. Блуждающие токи	65

4.1. Источники блуждающих токов	-
4.1.1. Линии рельсового электротранспорта	66
4.1.2. Линии электропередач постоянного тока	69
4.2. Компьютерный анализ поля блуждающих токов	70
4.3. Измерения в поле блуждающих токов	72
4.3.1. Разность потенциалов труба-земля	-
4.3.2. Градиент потенциала в земле	73
4.4. Мероприятия по ограничению блуждающих токов	76
Глава 5. Токи электрохимической защиты	80
5.1. Электрохимическая защита	-
5.2. Катодная поляризационная характеристика	81
5.3. Критерии электрохимической защиты	83
5.3.1. Минимальная защитная плотность тока	84
5.3.2. Минимальное защитное смещение потенциала	85
5.3.3. Минимальный защитный потенциал	87
5.3.4. Максимальный защитный потенциал	89
5.4. Измерение поляризационной составляющей защитного	
потенциала	91
5.5. Компьютерный оценка поляризационной составляющей	. 94
5.6. Вторичные явления при электрохимической защите	98
5.6.1. Катодные осадки	-
5.6.2. Последействие катодной поляризации	102
Глава 6. Решение сетевой задачи электрохимической защиты	104
6.1. Исходная система уравнений	-
6.1.1. Сетевая задача электрохимической защиты	-
6.1.2. Основные уравнения и формулы	105
6.1.3. Граничные условия для участка сети	109
6.1.4. Система уравнений для обособленной сети	112
6.2. Численный метод расчета сетевой задачи	113
6.2.1. Основные положения метода дискретизации	-
6.2.2. Система уравнений для сети с дискретными	
параметрами	115
6.2.3. Решение системы уравнений	116
6.3. Расчет трубопроводной сети произвольной сложности	118
6.4. Оптимизационные задачи электрохимической защиты	119
6.5. Нелинейная сетевая задача	122
Глава 7. Методическое обеспечение задач ЭХЗ	141
7.1. Содержание комплекса компьютерных программ	-
7.1.1. Назначение пакета программ АРМ ЭХЗ-5П	-
7.1.2. Структура пакета программ	144
7.2. Расчетные параметры трубопровода	146
7.2.1. Удельное продольное сопротивление	-
7.2.2. Удельное сопротивление изоляции	147

7.2.3. Удельное электрическое сопротивление грунта	149
7.2.4. Стационарный потенциал	151
7.3. Расчетная схема трубопроводной сети	154
7.3.1. Шаг лискретизации	155
7.3.2. Конфигурация расчетной схемы сети	158
733 Периферийная сеть	159
7.4. Расчетная схема системы ЭХЗ	163
741 Оптимизационная сетевая залача	164
7.4.2 Pacyet nnu заданных токах	166
$7.4.2$ Pacyet Kayeet Ba μ_{301} μ_{101}	-
7.1.5.1 ue let ku leetibu hooninghin $2.2.5.1$ $1.5.1$ 1.5	167
	168
8 1 Схемы соелинений католной станции	-
8.2 Католиций преобразователь	169
8.2. Канодный преобразователь	107
8.3. Конструкции анодных заземлителей	172
	170
8.4.1. Сталь и чугун	170
8.4.2 fragman	1/9
8.4.5. Ферросилид	102
8.4.4. Свинец	184
	- 10 <i>5</i>
8.4.6. Платина	185
8.5. Расчет катодной защиты	186
8.5.1. Постановка задачи	186
8.5.2. Расчет влияния анодного заземлителя на пассивный	
трубопровод	188
8.5.3. Расчет влияния анодного заземлителя на активный	
трубопровод	192
8.5.4. Анодный заземлитель в трубопроводной сети	195
8.6. Расчет анодного заземлителя	196
8.6.1. Сопротивление растеканию электрода	-
8.6.2. Сопротивлкение растеканию группы электродов	199
8.6.3. Экономичное число стержней заземлителя	-
8.6.4. Срок службы анодного заземлителя	201
8.7. Вспомогательное оборудование	202
8.7.1. Дренажная и питающая линии	203
8.7.2. Изолирующее фланцевое соединение	207
8.7.3. Контактные устройства	210
8.7.4. Блоки совместной защиты	-
Глава 9. Протекторная защита	213
9.1. Общие сведения	-
9.2. Протекторные материалы	216
93 Протекторные установки	219

9.3.2.Активаторная засыпка 221 9.3.3.Размещение протекторов 222 0.4. Выскласти и во составление протекторов 222
9.3.3.Размещение протекторов
9.4. Расчет протекторной защиты
9.4.1. Расчет при заданном токе протекторной установки
9.4.2. Расчет гальванической пары протектор-трубопровод 224
9.4.3. Оценочный расчет протекторной защиты
Глава 10. Электродренажная защита
10.1.Общие сведения
10.2.Схемы электродренажной защиты
10.2.1. Прямой электродренаж
10.2.1. Поляризованный электродренаж
10.2.3. Усиленный электродренаж
10.3. Расчет дренажной защиты
10.3.1. Общие требования к расчетной схеме
10.3.2. Шаг дискретизации рельсовой линии
10.3.3. Погрешность поля дискретного проводника
10.3.4. Конфигурация расчетной схемы рельсовой сети
10.3.5. Рельсовая линия как эквивалентный трубопровод 244
10.3.6. Дренажные цепи
Глава 11. Схемы электрохимической защиты
11.1. Катодные станции с несколькими заземлителями
11.1.1. Распределенные заземлители
11.1.2. Катодная станция с противопотенциалом
11.1.3. Катодная станция с заземлителем-токовводом
11.2. Совместная защита
11.2.1. Два параллельно уложенных трубопровода
11.2.2. Пучек параллельно уложенных трубопроводов
11.2.3. Близко расположенные трубопроводы
11.2.4. Пересекающиеся трубопроводы вблизи анодного
заземлителя
11.3. Заземленные трубопроводы
11.3.1. Заземление как эквивалентный трубопровод
11.3.2. Влияние заземления на эффективность защиты
11.3.3. Многократно заземленная трубопроводная сеть
Глава 12. Заземленные железобетонные конструкции
12.1. Коррозия железобетона
12.2. Бетон как коррозионная среда
12.3.Электрохимические параметры арматуры
12.3.1.Электрохимический потенциал
12.3.2.Катодное поляризационное сопротивление
12.3.3.Анодное поляризационное сопротивление
12.4. Арматурная сетка как эквивалентная трубопроводная сеть 285

Литература	306
12.5.4. Анализ результатов расчета	303
12.5.3. Численное решение	301
12.5.2. Аналитическое решение	299
12.5.1. Постановка задачи	298
12.5. Распределение токов коррозии по окружности стержня	297
12.4.3. Эквивалентная сеть сооружения	290
12.4.2. Сетка участка конструкции	286
12.4.1. Пучек из стержней	-

www.enes26.ru

Предисловие

В науке о коррозии и защите от нее сделано настолько много, что у практиков часто пропадает всякая надежда отыскать в этом море информации что-то срочно необходимое и которое, возможно, давно покоится на N-ой странице толстой монографии весьма уважаемого автора. Поэтому инженер часто не очень лестно отзывается о деятельности коллегиученого, который "не дает ничего нового", порой скрывая за этим скепсисом свое незнание или неумение найти давно подготовленную для него отгадку нерешенной задачи. Если бы инженер-коррозионист старательно и, что весьма важно, своевременно реализовывал все, что ему рекомендуют ученые, то можно было бы избежать катастрофических коррозионных разрушений, которые время от времени будоражат мир.

Эта книга сделана для тех, кто хочет уложить свою трубу в землю на 100 лет, и чтобы о ее коррозионном состоянии не беспокоились ни его внуки, ни его правнуки. Книга написана языком, доступным для студента, инженера, фермера и грамотного слесаря, поскольку знания об электрохимической защите (ЭХЗ) возможно пригодятся им для антикоррозионной защиты своего личного автомобиля.

Инженер-проектировщик и студент-дипломник познакомятся в книге с уникальными компьютерными программами, которые позволяют решать так называемую сетевую задачу, когда ищется распределение тока и потенциала в сложных переплетениях подземных коммуникаций города или промышленного предприятия и анализируется при этом работа взаимосвязанной системы одновременно действующих установок ЭХЗ. Здесь же впервые в обобщенном виде дается теория поля токов для сетевой задачи.

Множество примеров расчета, приведенных в книге, вселяет уверенность, что компьютерные программы успешно решают практически все важные задачи антикоррозионной практики. К ним можно отнести такие, как определение коррозионно-опасных зон, вычисление скорости язвенной коррозии, выбор параметров электрозащитных установок с расчетом поля тока и потенциала на любом криволинейном трубопроводе с разветвлениями и неоднородностями различного рода, определение оптимального количества установок ЭХЗ и оптимальной схемы их размещения при условии минимума капитальных и эксплуатационных затрат. Причем могут быть найдены оптимизационные схемы совместной защиты ряда разнородных сетей общими средствами ЭХЗ.

Программы даже выполняют сметно-финансовый расчет в соответствии в действующими нормами и прейскурантами и распечатывают проектно-сметную документацию.

В процессе обучения персонала предприятий предлагаемые компьютерные программы можно использовать как тренажеры. Так, например, можно ввести в компьютер действующую в данном микрорайоне схему ЭХЗ и проигрывать на такой модели различные варианты ее работы, меняя токовую нагрузку установок, местоположение анодных заземлителей, их количество, устанавливая перемычки, исследуя вредных влияния токов защиты на соседние незащищенные сооружения и т.д.

В книге, разумеется, не обойдены вопросы схемного и конструктивного устройства, монтажа и эксплуатации защитных установок различного рода, а также современные методы полевых измерений. В частности, продемонстрирован новый расчетно-полевой метод, дающий возможность определять величину удельного электрического сопротивления изолирующего покрытия трубопровода, причем в заданной точке трубопроводной сети и, разумеется, без вскрытия трубопровода.

Расчетно-полевой метод пригоден даже для определения величины плотности тока коррозии и защиты в заданной точке трубопровода.

Сетевая задача для трубопроводов мало чем отличается от сетевой задачи для арматурной сетки железобетонной конструкции, например, свайного основания здания. Поэтому представленная теория и описанные компьютерные программы позволят пользователю рассчитать токи коррозии и защиты всевозможных свайных опор, заземлений, обсадных колонн скважин и других сооружений, которые можно моделировать эквивалентной трубопроводной сетью.

Книга подготовлена на основе материала лекций, читаемых в *Волго-градской государственной инженерно-строительной академии* автором, который занимается теорией и практикой защиты трубопроводных сетей и других металлических сооружений уже более 45 лет. Компьютерные программы в его разработке прошли надежную проверку не только в учебном процессе, но и на производстве в двух десятках проектных и эксплуатационных организаций страны.

Пакет АРМ-ЭХЗ-6П рекомендован для применения Руководящим документом РД 153-39.4-091-01 «Инструкция по защите городских подземных трубопроводов от коррозии», подготовленным АКХ им. К.Д. Памфилова - головной организацией РФ по коррозии и защите трубопроводных сетей.

Первое издание книги разошлось чрезвычайно быстро. Автор не раз встречал свою книгу, перепечатанную на ксероксе. По просьбе своих читателей и имея ввиду информационный голод последних лет в этой области, автор посчитал своим долгом переиздать книгу, причем с существенной переработкой и дополнением.

www.enes26.ru

- corrodere

1.

:

,

,

,

99,99%

,

,

	-	
(0,01%)

,

?

•

15

,

;

1.5.

1748 .

,

1773 .

,

:

,

,

,

,

:

:

,

,

1890.

· , · , · , · , · , · , · , · , · ,

- 100

,

,

illoonesser 750

(.2.1).

,

.2.1,

,

,

"

"

,,

,

,,

Fe⁺ -

,

,-

,

:

,

,

30

:

,

,

2.2.

,

,

,

2.2.1.

,

,

,

.2.2.

•

,

,

:

.2.3.

I –

•

:

,

3.

36

,

" (.2.5,3).

,

:

,

39

 $I=(\phi \ -\phi \)\,/\,R$, (2.2)

,

,

$$I = (\eta + \eta + \Delta U) / (P / S + P / S_a + R), \quad (2.6)$$

-

-

 η , η -

;ΔU -

; P , P -

$$q = 3600^{\circ}M / (nF),$$

$$j = I / S = G / (SqT),$$
 (2.8)

_

_

, _

$$j = \begin{cases} 0,95 v_1 \\ 0,85 v_2, \\ 0,85 v_2, \\ 0,85 v_2, \\ 0,85 v_2, \\ 0,000 \\ 0,0$$

,

•

,

,

,

(U ≈ 10).

,

•

R = U / I ,

•

(I),

S,

2	1
Ζ.	L

0,01...0,1

/

•

_

	,	
	/	
1	0,001	
2	0,0010,005	
3	0,0050,01	_''_
4	0,010,05	
5	0,050,1	_''_
6	0,10,5	
7	0,51,0	_''_
8	1,05,0	
9	5,010,0	_**_
10	10,0	

6-8

(2.5) (2.6),

I = E / R; (3.1) R = R + R + R,

;

;

_

-

-

;

-

3.2.1.

.3.1.

 $\varphi = \mathrm{I}\rho / (2\pi r) , \qquad (3.2)$

A

М

T

,

_

I. -

_

, M,N -

.3.1

,

•

M N

,

$$\phi_{\rm M} = {\rm I}\rho \left[1 / (2\pi a) - 1 / (4\pi) \right];$$

$$\phi_{\rm N} = {\rm I}\rho \left[1 / (4\pi a) - 1 / (2\pi a) \right], \qquad (3.3)$$

(3.2)

$$U \,=\, \phi_M \,-\, \phi_N \,\,, \qquad \qquad \rho$$

$$\rho = 2\pi a R, \qquad R = U / I.$$
 (3.4)

.3.2

,

52

: $\rho_i = 120,\,70,\,40,\,32,\,27,\,22,\,21,\,20,\,18,\,16,\,15.$

•

,

= 2h.

,

z.

,

< 0,5

,

_

ρ

,

				5.1
-	ρ, .			
-	_	, ρ		
, Z,	, ρ_i	= 1	= 0,5	= 0,25
0,1	120	37,780	63,952	90,612
0,3	70	33,649	49,207	62,339
0,5	40	30,708	39,742	42,779
0,7	32	28,111	32,392	32,695
0,9	27	25,377	26,914	26,820
1,1	22	23,139	23,370	22,832
1,3	20	21,247	20,684	20,140
1,5	18	19,698	18,859	18,370

55

•

-

•

,

:

(3.4)	.3.3,	-
k, enest		
$\rho = 2\pi a k U / I ;$ k = 1 /(1/(2a) +1/\sqrt{(2z)^2 + a^2} - 1/\sqrt{(2z)^2 + (2a)^2}).	(3.6)

,

, = 0,25
k = 1,92.
.3.3,
$$< k = 2.$$

•

•

,

2

2 .3.2:

•

,

,

_

3.2.2.

$$(10-40 .),$$

 $\Delta U = 0,1 = const,$
 j
 $3 .3.3.$

(2)

,

_

(3.5),

,

,

.3.3

«

» 1998-2000 .

					3.3
	<i>ρ</i> , .	j , / 2		<i>ρ</i> , .	j , / ²
1	20,3	0,215	15	14,2	0,227
2	29,1	0,155	16	24,5	0,160
3	33,0	0,148	17	26,3	0,280
4	34,7	0,118	18	48,8	0,055
5	30,0	0,091	19	43,2	0,090
6	33,8	0,105	20	20,7	0,254
7	27,3	0,230	21	32,0	0,176
8	30,0	0,150	22	49,8	0,160
9	21,6	0,249	23	33,8	0,094
10	20,7	0,214	24	8,5	0,50
11	43,5	0,180	25	22,7	0,180
12	18,8	0,300	26	21,6	0,249
13	30,0	0,104	27	30,0	0,150
14	59.2	0.064	28	27.3	0.230

,

, 318,

> ρ-.3.2

600

.

j

,

$$S = 5.10^{-3}$$
 ².

,

)

,

5

-

-

3.3.

3.3.1.

,,

"

.3.5

•

,

-

_

_

3.3.2.

60

.3.6,

,

 $U = \phi - \phi + U$, (3.8)

,,

,

"

"+"
,
U
,
U .1, U .2, U .3,
U .1 > U .2 < U .3,
(3.6),
U = const,
$$\varphi_1 - \varphi_1 > \varphi_2 - \varphi_2 < \varphi_3 - \varphi_3.$$

,

•

,

,

/).

_

.3.7

•

 $=-\Delta U$ $/\Delta$ -

S_y,

I

,

j

$$j = E_y / \rho^{-1}$$
(3.9)

j

•

0y; j

_

; $\Delta U -$

d

; Δ – –

$$(-3.7), , ,$$

$$(-3.7), , ,$$

$$f_{h} = 2.$$

$$(-3.7), , ,$$

$$S_{y} = 10,35^{-2}, ,$$

$$A = 1, ,$$

$$a = 1, ,$$

$$f_{h} = 1,5, ,$$

$$A U = 11,3, ,$$

$$f_{h} = 1,5, ,$$

$$A U = 11,3, ,$$

$$f_{h} = 1,5, ,$$

$$A = 1, ,$$

$$f_{h} = 1,5, ,$$

$$f_{h} = 1,5, ,$$

$$A = 1, ,$$

$$f_{h} = 1,5, ,$$

$$f_{h} = 1,5, ,$$

$$A = 1, ,$$

$$f_{h} = 1,5, ,$$

$$f_{h} = 1,5, ,$$

$$A = 1, ,$$

$$f_{h} = 1,5, ,$$

$$f_{h} = 1,5, ,$$

$$A = 1, ,$$

$$f_{h} = 1,5, ,$$

$$f_{$$

,

,

,

,

•

2-3 -

_

, 0,8...1,0 /

•

•

3.4.			
7.	, U		$6, -7$, $L_2,,L_N$, -1
U ₂ ,,U _N).	U ≠ const		$(\mathbf{U} = \mathbf{U}_1,$
ј() (41 - 41 - 41	N ,	, –
i = 1,2,N. , j.	$(\Delta L_1, \Delta L_2,, \Delta L)$ (BA - E)j =	$-B\boldsymbol{\varphi}_{c}$;	$. \Delta L_i = L_i - L_{i-1},$
	$\mathbf{R} \mathbf{j} + \mathbf{\varphi}_{c}$	= U,	(3.10)
j -	; ,A -	; R ,	
, N)	; E -	;φ _c -	(- ; U -
	,	φ _c	, (3.10) - , -
	R ,	– D	-
	К	$-\mathbf{N}_0$	-

 $\phi_c = -0.5 \pm 0.2$.

 $\rho = 20$. .

66

3.5.

,

(R).

_

-L

,

•

-7

,

,

-7.

-

.3.9.

3.5.1.

3.5.2.

R . : ,U ; U ;

70

3.5.3.

R

•

•

-

$$\Delta U_{.1} = U_{.1}^{\circ} - U_{.1}^{\prime} + \Delta U_{.2} = U_{.2}^{\circ} - U_{.2}^{\prime} + 2 = U_{.2}^{\circ} - U_{.2}^{\prime} + \Delta U_{.2}^{\prime} + \Delta U_{.2}^{\prime} + 2 = U_{.2}^{\circ} - U_{.2}^{\prime} + 2 = U_{.2}^{\circ} + 2 = U_{.2}$$

$$j = \Delta U / (\rho d), / ^2,$$
 (3.14)

:

. , $\Delta y/h = 2$

-

C -

C = 12,4.

•

,

R

 $R = \rho d\Delta U / (\Delta U), \qquad \Delta U = (U' - U) \qquad (3.15)$

,

,

,

,

(

•

,

_ _

_

,, " • , , , , , , , , , www.enes26.ru , , , 24 , , ,

4.1.1.

.4.1

,

(

),

,

 $U = \phi - \phi + U ,$

(4.1)

,

-

•

,

•

10

79

,

,

$$U = \Delta U + U , \qquad (4.3)$$

•

U -

2 (.4.3),

$$(U_{p} = 0).$$

$$(U_{p} = 0).$$

$$(Q_{p} = const.),$$

$$(\phi = const.),$$

$$(\phi = 0.$$

$$(4.2)$$

$$(\Delta U = const. > 0.)$$

$$(\Delta U = const. > 0.)$$

$$(\Delta U = const. < 0.).$$

$$(\Delta U = const. > 0.)$$

$$(\Delta U = const. < 0.).$$

•

. . (

,

•

-

)

,

-

-

U =-0,55 .

,

,

4.3.2.

,

U . .4.4

_

,

.4.4,),

ΔU

, , , , ($\Delta U_1 \quad \Delta U_2$), ∠L = 20...100 . ΔU_1 $\varDelta U_2$ **Δ**U (j). "**_**" , $\Delta U_1 \ \Delta U_2$, , : 1) , ,, "; 2) " www.enes26.ru j 4.4. , " ". , 10 ,

,,

"

$$U_i$$
 5 10 .
U ΔU

$$U = \sum_{i=1}^{n} U_i / n;$$

$$\Delta U = U - U ,$$
(4.6)

4.5.

•

- : ; ;

,

: (,) R ,). • R : < 20 R ; , R > 200 ; · , , R > 500 ; > 1500 R R R , : , $R \rightarrow 0$ R $\rightarrow \infty$.

(

R : (/). - R : ; - ; ;

, - ,

:

-7.

5.

,

(.

,

_

,

2.

1-

"

,,

2-

(.5.1),

•

5.2.

:

-

j

ΔU

U . , $\therefore \Delta U = P^{\cdot}j$. , .5.2

,

_

•

: , j .min; , ⊿U .min; , U , U .min ; .max•

_

•

,

,

,

,

,

/ 2.

20...150

.

 $\Delta U_{,\min} = \Delta U_{,\min} + \Delta U_{,\min}$ (5.4)

$$\Delta U_{..min} = -0.3 , \qquad -0.1 , \qquad -0.1$$

•

5.3.3.

$$= -0.85 \quad (\qquad , \qquad U _{min} = -0.85 \quad (\qquad). \qquad I = -0.85 \quad (\qquad). \qquad I = -0.1 \quad U _{min} = -0.1 \quad U _{$$

$$U = -0,4 \dots -0,75$$
,

U
$$_{.min} = -0.5 \dots -0.85$$
.
U $_{.min} = -0.85$

$$U \approx const.$$

,

, U $_{min} = -0,75$, 6,10. 0,85 .

U $_{.min} = -0.85$.

.5.1. U .min = -0,95 ... -1,2

 ΔU .min

9.602-89

,

$$\Delta U_{,\min} = -0.1,$$

5.1

U _{.min} ,		
-0,85		
-0,9		
-0,951,2	,	

5.3.4.

U .max,

,

,

U .min.

,

,

,

(. .5.1)

,

U .max

,

(1) (2).

 $(U_{...max} = -1,15)$.

_

U .max

.5.4. - ΔU ΔU ().

_

•

-

•

,

.
$$U = -0,55$$
. -
-100.
(R = 100.), .5.3 -
(R = 100.).
s = 0,04, -10
- -6 -
, ...
U \leq U =

-0,85 .

•

5	2
J	.∠

nn	j ,	j,	,	R ,	ΔU ,	⊿U ,	U ,	U',
	/ 2	/	. 2	•	6.			
1	1760	70.385	0.341	9.363	-0.600	-0.704	-1.854	-2.625
2	491.2	19.649	0.636	15.769	-0.313	-0.196	-1.059	-1.217
3	364.4	14.576	0.668	16.420	-0.243	-0.146	-0.939	-1.061
4	321.8	12.871	0.689	16.891	-0.222	-0.129	-0.900	-1.009
5	300.6	12.026	0.700	17.125	-0.210	-0.120	-0.881	-0.983
6	288.7	11.550	0.694	17.086	-0.201	-0.116	-0.866	-0.964
7	282.3	11.294	0.691	17.036	-0.195	-0.113	-0.858	-0.955
8	280.0	11.200	0.690	17.018	-0.193	-0.112	-0.855	-0.951
9	281.4	11.258	0.691	17.029	-0.194	-0.113	-0.857	-0.954

5.3

nn	j ,	j,	,	R ,	ΔU ,	⊿U ,	U	U',
	/ 2	/	• 2	•				
1	545.4	2.182	0.628	156.4	-0.343	-0.218	-1.111	-1.140
2	331.8	1.327	0.684	169.2	-0.227	-0.133	-0.910	-0.920
3	298.7	1.195	0.699	172.9	-0.209	-0.119	-0.878	-0.888
4	287.9	1.152	0.694	172.3	-0.200	-0.115	-0.865	-0.867
5	282.7	1.131	0.691	171.7	-0.195	-0.113	-0.859	-0.868
6	279.6	1.119	0.690	171.4	-0.193	-0.112	-0.854	-0.864
7	277.9	1.112	0.689	171.2	-0.191	-0.111	-0.853	-0.862
8	277.6	1.110	0.689	171.2	-0.191	-0.111	-0.852	-0.862
9	279.0	1.116	0.689	171.3	-0.192	-0.112	-0.854	-0.864

I = 20,0 , I = 1,3 .
R
) (
$$^{-2}$$
),
1 .5.4,

j ,	, . 2					
/ 2	1	2	3	4		
50	0.3	0.3	0.5	0.8		
75	0.4	0.5	1.2	2.5		
100	0.5	0.7	2.1	3.1		
150	0.6	1.1	2.5	3.3		
200	0.65	1.2	2.2	3.1		
300	0.7	1.16	1.7	2.1		
400	0.65	1.0	1.2	1.3		
600	0.62	0.8	0.8	0.8		
800	0.62	0.7	0.7	0.7		
1000	0.6	0.6	0.6	0.6		
	2					

•

,

,

,

(2, 3, 4)

•

,

⁴30 .

•

, .

_

_

$$.5.4$$
 - $j > 1000$ / 2

$$= 0,6 / j$$
 . (5.11)

,

1.

(

,		ρ =	40		-
		ρ.			
2.		,			
⊿U	$/ \Delta U = 1,7.$ $\Delta U / \Delta U =$	$\rho = 20$ 5,9.		•	
3.			U		-
	U				ΔU
	9.602-89 U = -0,5	U . _{max} =	-1,15 .		,
1	U = -0.55	-0,6 = -1,15 ,		II	_ T T
$\Delta U + \Delta U$	= -1,854 .			U	= 0 +
4.	U '		5		, -
	,		,		U
		Niene	,		-
,	∆U €	, -2,625 + 0,55 +	0,6 = - 1,475	•	-
	,	,	,		-
			, _0.05		-
	,	-0,85	0,03		-0,9
(5.1).		,			_
	. ,	,			-
⊿U		-0,1 , 100 .			

- 5		5
J	٠	J

NN		1		2	3		4		
-	j ,	⊿U ,	j ,	⊿U ,	j ,	∆U ,	j ,	∆U ,	
	/ 2	В	/ 2	В	/ 2	В	/ 2	В	
1	1760	-0.600	1814	-0.600	1857	-0.600	1885	-0.600	
2	492	-0.313	475	-0.439	491	-0.500	510	-0.523	
3	365	-0.243	353	-0.369	346	-0.509	345	-0.600	
4	322	-0.222	313	-0.340	299	-0.510	290	-0.638	
5	301	-0.210	294	-0.325	279	-0.503	265	-0.649	
6	289	-0.201	283	-0.315	267	-0.498	252	-0.650	
7	283	-0.195	277	-0.310	261	-0.494	245	-0.649	
8	281	-0.193	274	-0.308	258	-0.493	241	-0.648	
9	282	-0.194	276	-0.310	257	-0.494	241	-0.648	
	<u> </u>								

•

,

110

•

(

/ ²). j < 300

,

$$\Delta U = j$$

5.11). (• .5.6

,

.5.5.

,

,

,

, _

1)

"

,,

5.6.2.

,

,

,

,

,

,

"

,,

,

www.enes26.14

•

,

.

· , -

, _ _

6. 6.1. 6.1.1. www.enes29.14 (() • , , , , , : ; ; _ : 1) (, _ ,);

114

 ϕ (L) ϕ (L+ Δ L) -

,

 $i(L)=~(~\phi~(L+\varDelta L)~-~\phi~(L)~)\,/\,(R~~\varDelta L)~,$

i(L) -⊿L; R -_ , /. $i(L) = -1 / R - d\phi (L) / dL$, (6.1) ،،_،، (i > 0) -, $(\mathrm{d}\varphi < 0).$ dL • di(L) , . . $\mathbf{j}(\mathbf{L}) = -\mathbf{d}\mathbf{i}(\mathbf{L}) / \mathbf{d}\mathbf{L} ,$ (6.2)enesserut enesserut , / . j(L) j > 0 di < 0, ،،_،، (6.2) (6.1) , $j(L) = \ 1/\ R \ d^2 \phi \ (L) \ / \ dL^2 \ . \label{eq:jL}$ (6.3) $R \quad j(L) = \phi \ (L) - \phi \ (L) - \phi \ (L),$ (6.4)R -; φ -(6.4)

•

116

$$\phi = I \rho / (4 \pi r) , \qquad (6.7)$$

$$\phi - ; r - ; r - ;$$

$$\varphi = I\rho / (2\pi r) . \qquad (6.9)$$

;

,

_

,

$$r > 2 L$$
 , \dot{L} -

jdL j = const,

•

$$\varphi = j\rho / (4\pi) \int_{0}^{L} (1/r + 1/r') dL, \qquad (6.10)$$

r -

; r' -

.6.1).

(6.10),

 $\varphi = \rho / (4\pi) \int_{(L)} j(\xi) G(\xi, x, y, z) d\xi;$ $G(\xi, x, y, z) = 1 / r (\xi, x, y, z) + 1 / r'(\xi, x, y, z),$ $\xi = \xi ; r' - ,$ (6.11) r x,y,z

)

)

,

.6.2.

,

 $L = L_m$ I_m, \mathbf{I}_{m}

ΔL

,

 $i_1-i_2+I_m-\ j\varDelta L\ =0$ (6.12)

$$j = -(i_2 - i_1) / \Delta L + I_m / \Delta L$$
. (6.13)

m

-

 $j(L) = - \operatorname{di}(L) / \operatorname{dL} + \delta(L_m, L) I_m$

,

j(L) = (1 / R $\,$) d $^2\phi\,$ (L) / dL $^2\,$ + $\,\delta(L_m\,$,L) I_m (6.14)
$$\begin{split} \delta(L_m,L) &= 0 & L \neq L_m; \\ \delta(L_m,L) & I_m = J_m & L = L_m, \end{split}$$
 $\delta(L_m,L)$ --L_m -: $J_m = \, I_m \, / \, \varDelta L_m$ - ΔL_{m} . _ -

 \mathbf{J}_{m}

:

(6.1),

•

$$i(L) = \begin{cases} -1 / R & d\varphi (L) / dL & L < L_m \\ & & \\ -1 / R & d\varphi (L) / dL + I_m & L \ge L_m \end{cases}$$
(6.15)

:

i(L)
i(L)

$$(I_{m} = 0),$$

$$(I_{m} = 0),$$

$$i(L) = d\varphi (L) / dL = 0 \qquad L = L_{g}, \quad (6.16)$$

$$L_{g} - , , \quad i(L_{g}) = 0.$$

$$L = L_{m}, \qquad I_{m},$$

$$R_{t} (t = 1, 2, ..., The .6.3).$$

$$R_{t} = \frac{1}{1 + \frac{1}{1$$

$$i_{1} - (i_{2} + i_{3} + ... + i_{T}) + I_{m} - j\Delta L = 0;$$

$$\Delta L = (\Delta L_{1} + ... + \Delta L_{t} + ... + \Delta L) / 2,$$
(6.17)

 $\Delta L_t / 2$ -

t-

, с ; ДL -. -

121

$$= 2 (6.17) (6.12) - (6.12) - (6.17) - (6.17) - (6.17) - (6.14) (6.14) - ($$

$$j(L) - 2 / \sum_{t=1}^{\infty} (1 / R_{t}) d^{2} \phi (L_{t}) / dL_{t}^{2} = \delta(L_{m}, L) I_{m}, \quad (6.18)$$

Σ

,

Łg+1

,

,

,

L.

-

-

$$\begin{cases} R_{\rm H3}(L)j(L) + \rho/(4\pi) \int j(\xi) G(\xi, L) d\xi - \varphi_{\rm T}(L) = -\varphi_{\rm 3}(L) - \varphi_{\rm cT}(L); \\ j(L) - \frac{2}{T} \sum_{t=1}^{T} \frac{1}{R_{\rm npt}} \frac{d^2 \varphi_{\rm T}(L_t)}{dL_t} = \delta (L_{\rm m}, L) I_{\rm m}; \\ d\varphi_{\rm T}(L)/dL = 0 \quad \text{при} \quad L = L_{\rm q}. \end{cases}$$

$$(6.19)$$

, (6.19) (6.4), (6.6) (6.11), -(6.18), -(6.16). (6.19), -

6.2.	26.10
6.2.1.	N.enest
	Mar ,

0z

,

,

)

(

.

x0y

,

_

,

(6.19)

$$\begin{cases} R_{\text{H3}_{i}} + \sum_{k=1}^{N} a_{ik} j_{k} - \phi_{\text{T}_{i}} = -\phi_{\text{3}_{i}} - \phi_{\text{cT}_{i}} , & \text{при} \quad i = 1, 2, \dots, N; \\ j_{i} - 1/\Delta L_{i} \sum_{t=1}^{T_{i}} (\phi_{\text{T}_{it}} - \phi_{\text{T}_{i}}) / (\Delta L_{it} R_{\text{пp}_{it}}) = \delta_{i} I_{\text{m}}, \quad \delta_{i} = \begin{cases} 1 & \text{при} \quad i = m; \\ 0 & \text{иное} . \end{cases} \end{cases}$$

$$_{ik} = \rho / (4\pi) \sum_{t=1}^{T_k} \int_{0}^{L_{kt}/2} G_{ikt} d\xi$$
(6.22)

-

$$G_{ikt} = 1 / \sqrt{r^{2} + (z_{k} - z_{i} + d_{i} / 2)^{2} + 1} / \sqrt{r^{2} + (z_{k} + z_{i} + d_{i} / 2)^{2}};$$

$$r^{2} = (x_{k} + \xi \cos \theta_{kt} - x_{i})^{2} + (y_{k} + \xi \sin \theta_{kt} - y_{i})^{2};$$
(6.23)

 $\{B_{ik}\;\}_N$

•

$$B_{ik} = \begin{cases} -1/\Delta L_{i} \sum_{t=1}^{T_{i}} 1/(\Delta L_{it} R_{mpit}) & -\pi p u \ k = i; \\ 1/(\Delta L_{i} \Delta L_{it} R_{mpit}) & -\pi p u \ k = it; \\ 0 & -\text{остальное.} \end{cases}$$
(6.26)

$$J_{i} = \begin{cases} I_{m} / \Delta L_{i} & i = m; \\ 0 & , \end{cases}$$

,

m -

 I_m .

 \mathbf{I}_{m}

(6.27)

(

φ.

128

 $j = (BA - E)^{-1} (J - B\phi - B\phi_c),$

(6.28)

j -

,

(6.24)

$$(AB - E) \varphi = AJ - \varphi - \varphi_{c} , \qquad (6.31)$$

$$\varphi$$

$$\varphi = (AB - E)^{-1} (AJ - \varphi - \varphi_{c}) . \qquad (6.32)$$
)
$$R , \qquad U \quad \Delta U - , \qquad (6.32)$$
c
$$R , \qquad U \quad \Delta U - , \qquad (6.24) \qquad (6.25), \qquad (6.25), \qquad (6.25), \qquad (6.24) \qquad (6.24) \qquad (6.24) \qquad (6.33)$$

$$A' - , \qquad A' j + R \quad j - \varphi = -\varphi - U , \qquad (6.30). \qquad (6.33)$$

$$A' - , \qquad U = \Delta U + U \qquad (6.30). \qquad (6.34)$$

$$A' j - \varphi = -\varphi - U ; \qquad (6.34) \qquad (6.34) \qquad (6.34) \qquad (6.34)$$

129

$$(BA' - E)j = J - B(\phi + U),$$
 (6.35)

R

 $R = \Delta U j^{-1}$. (6.36)

)

(6.29) -

_

$$\mathbf{U} = \mathbf{R} \quad \mathbf{j} + \Delta \boldsymbol{\varphi} + \mathbf{U}_{\mathrm{c}} \quad , \tag{6.37}$$

$$\Delta \phi$$
 -

$$\Delta \varphi \qquad (6.30) \qquad (6.30) \qquad (6.30) \qquad (6.30) \qquad (6.30) \qquad (6.30) \qquad (6.31) \qquad (6.32) \qquad (6.31) \qquad (6.32) \qquad (6.32) \qquad (6.32) \qquad (6.33) \qquad (6.33) \qquad (6.33) \qquad (6.33) \qquad (6.33) \qquad (6.33) \qquad (6.34) \qquad (6.34) \qquad (6.35) \qquad (6.35) \qquad (6.35) \qquad (6.35) \qquad (6.35) \qquad (6.36) \qquad (6.3$$

•

6.3.

6.3.1.

•

,

,

,

,

,

,

_

,

,

,

,

,

,

,

.6.5.

(6.36) $I \ = (\phi \ _{\mu} - \phi \ _{\nu}) \, / \, (R \ _{\mu\nu} + Z _{\mu} \ + Z \ _{\nu}),$;φ_μ,φ_ν-ν-I μ-, ;

; $R_{\mu\nu}$ - Z_{μ} , Z $_{\nu}$ μν-•

$$R_{\mu\nu} = 0.$$

"(Z)

_

_

,

,

I,

,

•

φ

$$(BA - E)j = -J - BU_c$$
, (6.40)

.6.1.

Nn	х,	у,	
1	0	0	, z = 1
2	200	0	, d×t= 200×6
3	400	0	, R =100 ·
4	500	-100	, I = 10
5	600	-200	
6	500	100	$-x_a=300, y_a=50, z_a=2$ ()
7	600	200	, $\rho = 30$
8	400	1	, $U_c = 0$

1.
.(6.38) (6.37):

$$3: Z_{\mu} = 0,234$$
;
 $8: Z_{\nu} = 0,517$.
2.
 ϕ
 $3: \phi_{\mu} = 2,012$;
 $8: \phi_{\nu} = 0$
3.
 $I = (2,012 + 0,0) / (0,234 + 0,517) = 2,68$.
4.
 $- U$ J J ,
 $4.$
 $= 0$ U =0, (6.39) (6.29), (6.29),

φ

6	\mathbf{r}	
Ο	.2	

nn		4		5	6	7
	ν-	μ-	ν-	μ-	0	/
1	-1,163		-0.062		-1.224	-1.201
2	-1.114		-0.044		-1.158	-1.136
3	-1.081		0.180		-0.901	-0.915
4	-0.926		-0.027		-0.953	-0.936
5	-1.095		-0.047		-1.142	-1.124
6	-	-0.858	-	0.036	-0.822	-0.962
7	-	-1.046	-	0.055	-0.991	-1.139
8	-	-1.059	-	-0.092	-1.151	-0.963

_

5.
$$U = 0$$
, $(6.39) (6.29) (. . .6.2).$
6. $U = 0$, $(..., 0.2).$
7. $U = 0$, $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(..., 0.2).$
7. $(.$

6.3

-	- ,	φ,	Z_{uv} ,	Z_v ,
	x, y, z,			
1	450, 0, 0	- 0,009	0,196	0,205
2	400,50,0	0,014	0,219	0,205
3	400,1,0	- 0,048	0,157	0,205

	-	-	φ,	$Z_{u\mu}$,	Z_{μ} ,	
		, x, y, z,				
	1	450, 0, 0	- 0,031	0,462	0,493	
	2	400,50,0	0,014	0,479	0,493	
	3	400,1,0	- 0,049	0,443	0,493	
د	6		2			- (U _ν)
•	6.6,	N).	,		(μ- ,
"	U_{ν}	-				
(U_{μ})		, • •				

$$U = 0.$$

6.5

-	U_{ν}, B	Z _u ,	Ι,	%%
1	-1.923	0.658	2.922	8.2
2	-2.158	0.698	3.092	13.3
3	-1.547	0.600	2.578	3.9

138

_

8,

"

,

,

139

t-

.6.7.

.

_

(6.36)

I _t R _t = (
$$\phi_{.\nu t} - \Delta \phi_{.\nu t}$$
) - ($\phi_{.\mu t} + \Delta \phi_{.\mu t}$), (6.43)

$$I_{c.t}, R_{.t} - t - t - t - t - t - \mu - t$$

$$\Delta \phi_{.,\mu t} = \sum_{s=1}^{Q} (-Z_{\mu t.\nu s} + Z_{\mu t.\mu s}) I_{..s},$$

$$Q - ; Z_{\mu t.\nu s} - ; Z_{\mu t$$

 φ t, μ -, ν -s.

$$\sum_{s=1}^{Q} (Z_{vt.vs} - Z_{vt.\mu s} - Z_{\mu t.\nu s} + Z_{\mu t.\mu s}) I_{.s} + R_{.t} I_{.t} = = \phi_{.vt} - \phi_{.\mu t} \qquad t = 1, 2, ..., Q, \quad (6.45)$$

6.3.4.

1 150...300 .

,

6.4.

$$Z_{i1} I_1 + ... + Z_{ik} I_k + ... + Z_{iM} I_M \ge U_i - U \quad ... min, \qquad (6.48)$$
$$i = 1, 2, ..., N, \ k = 1, 2, ..., M,$$

,

, _

(

,

)

•

,
I_{max},

,

4.

_

$$I_k \le I_{max}$$
, $k = 1, 2, ..., M.$ (6.50)

2N.

6.5.1.

5.

R R

R

$$\mathbf{R} = \mathbf{R} + \mathbf{R} \quad . \tag{6.51}$$

$$R - (-2) = \pi d R - (-2) = -$$

•

(j = const)

.6.9

•

-

-

-

_

$$R = \rho h / (\pi ds), , (6.54)$$

$$h = 0,01 , (6.51)$$

$$R = (-+0,01\rho) / (\pi ds), (6.55)$$

$$R = (-+0,01\rho) / (\pi ds), (6.55)$$

$$R = 0,01 , (6.55)$$

$$R = (-+0,01\rho) / (\pi ds), (6.56)$$

$$R = 25...150 , R$$

•

5.

, www.enesso.ru

_

j

_

;

_

_

-

;

R

 $R = \rho / (\pi t(d - t)), \qquad (7.1)$

ho = 0,18 - , ' 2/; d - , ; t - , .

7.2.2.

(R')

$$R' = R / (\pi d),$$
 (7.2)

:

-

	C (V)	7.1
×	32	-
$d \times t$,	R , /	
57×3,5	3,06.10-4	
89×3,5	$1,92^{\cdot}10^{-4}$	
108×4	$1,38^{-1}10^{-4}$	
133×4,5	9,91 ⁻ 10 ⁻⁵	
159×5	7,44.10 ⁻⁵	
219×6	4,48 [.] 10 ⁻⁵	
273×6	$3,57 \cdot 10^{-5}$	
325×7	$2,57 \cdot 10^{-5}$	
377×8	$1,94^{\cdot}10^{-5}$	
426×8	$1,71^{\cdot}10^{-5}$	
529×9	$1,22 \cdot 10^{-5}$	
620×9	$1,04.10^{-5}$	
720×10	$8,07.10^{-6}$	
820×10	$7,08^{\cdot}10^{-6}$	
920×11	$5,73^{-1}10^{-6}$	
1020×12	$4,74^{\cdot}10^{-6}$	
1220×12	$3,95^{-1}10^{-6}$	
1420×12	$3,39^{\cdot}10^{-6}$	

7	2
1	

, R	. 2
500	5000
500100	50001000
10050	1000200
5020	20050
20	50

7	2
1	
	••

:

	R =	U 20 \cdot 2	$R = 200 \frac{U}{2}$			
,	$\rho = 10$	$\rho = 100$	$\rho = 10$	$\rho = 100$		
0	-2,0371	-4,5483	-0,9526	-1,4199		
50	-1,4663	-1,5798	-0,9127	-1,0439		
100	-1,3458	-1,3024	-0,9025	-0,9742		
200	-1,2348	-1,1100	-0,8924	-0,9243		
300	-1,1676	-1,0301	-0,8860	-0,9027		
500	-1,0749	-0,9553	-0,8766	-0,8810		
800	-0,9801	-0,9012	-0,8661	-0,8645		
1200	-0,8998	-0,8649	-0,8564	-0,8531		
1800	-0,8500	0,8500 -0,8500 -0,		-0,8500		
2000	-0,8893	-1,0573	-0,8544	-0,8929		
,	14,3622	13,9534	0,9978	1,0481		
, enesitiv p						
	•	NNN'S				

,

,

159

ρ

_

_ -

2.

•

,

ρ

ρ

, ρ, .7.3,

ρ.

:

ρ

ρ,

R

U

"

"

,

,

7.4

-

_

-

•

-

_

-	-
	,
	0
	+0,20
	+0,25
	+0,30

(

(

7.5

, %	1	5	10	15	20	25
U _{c .max} ,	-0,35	-0,45	-0,53	-0,60	-0,64	-0,65
U .min,	-0,55	-0,67	-0,74	-0,76	-0,77	-0,78

•

U = const

,

,

,

,

,

,

,

φ

,

7.3.1.

:

,

-

:

,

-

$$\begin{array}{ll} dL = 50 & dU\% = 0,05\% ; \\ dL = 500 & dU\% = 5\% . \end{array}$$

7	6	
1	.0	

,

_

_

dL =

,	= -100		= -50			= -25			
	25	50	100	25	50	100	25	50	100
0	1,0	3,5	9,6	1,6	4,7	11,7	2,8	6,7	15,7
50	0,2	1,3	7,2	1,3	2,6	6,9	1,9	5,2	13,0
100	-	0,7	5,4	1,1	2,2	6,5	1,5	3,8	12,4

.7.6

dL

,

dU% = 5...10%,

,

50

. • $R = 150 \cdot cn^{25}$, .7.6, : ,

 $\begin{array}{ll} - \, dL &= 50 \, \dots \, 200 & ; \\ - \, dL &= 200 \, \dots \, 2000 & . \end{array}$

7.3.2.

,

Z_{uµ} -

_

_

.
$$Z_{u\mu} = 0,05...0,2$$
 .

•

(6.39).

$$U_{c} \rightarrow U + \varphi , \qquad J , \qquad (6.39)$$

$$I = \frac{1}{2} + \frac{1}{2}$$

Ι,

,

-

- 150...250 , - 30...50 .

,

7.4.2.

=2

_

;

2,

"+"

_

176

8.2.

,

(.8.1, .1)

;

_

_

,

,

220

24 96 .

S2

;

,

, U = 0,4...0,7),

,

)

.8.4.

;

.8.4,

,

,

,

,

,

 $\alpha = 0$

(

(

:

,

,

.8.7.

,

8, 6. 8

),

2

(

,

,

,

7.

, , - -(. 2.8) 1 . 1 10 . , 750 . 20 150000 . , -

.8.1

8.1

,

	- ,q, /(`)
	10
	0,81,5
+	0,10.3 0,040,08
	0.002 ~ 0

www.enes26.ru

,

1...2

3

,

8

,

0,6 / ³.

,

. .8.1). 10 (

,

,

,

,

$$2 \ _{2} \ -2 = \ _{2} + 4 \ ^{+}; \qquad (8.1)$$

$$2 \ \Gamma + 2 = Cl_{2}.$$

$$C \qquad Cl \qquad , \qquad -$$

$$Cl_{2} + H_{2}O = HCl + H \ 1O; \qquad (8.2)$$

$$C + 2HClO \rightarrow CO_{2} + 2HCl. \qquad , \qquad -$$

,

_

$$C + O_2 \rightarrow CO_2. \tag{8.3}$$

•

_

,

,

-

$$q = 1,2$$
 /('), $q = 0,2$ /(').

,

,

,

 $\overline{}$

,

2

,

•

,,

•

,

"

•

,

_

,

.8.9,

.

,

,

9,кт/(А.год) 2,0 MN. Or D, 1,0 0,5 2 3 0,2 0,1 60 40 80 100 j, A/m² 20 ō . 1 -

,

,

; 3-

; 2-

:

.8.9

,

• •

,

- 10....50 / ².

,

,

-2

Pb+Ag -

2,5...10

,

(

),

6.

,

,

- (8.4) -
 - :
- $\alpha = \sqrt{R} / R \quad ; \qquad (8.5)$
- $U(0) = \alpha I R$; (8.6)
- $\mathbf{R} = \mathbf{R}' + \mathbf{b}\boldsymbol{\rho}, \qquad (8.7)$

$$R - () , ; I - ; \rho - ; R - () , ; R -$$

.8.12.

,

()

,

(1) (2).

, - , , - , - , , , - , ΔU L:

•

:

L_o.

8.5.3.

$$\Delta U = \Delta U + \Delta U_a, \qquad (8.8)$$

;

,

ΔU , ΔU -

,

,

; *Δ*U -

$$d = 200x6$$

5 . . U = U $_{max} = -2.5$, U = U $_{min} = -0.85$.

_

,
$$R = 50$$
 · -
, .8.15, -
.8.15, -
.8.15, -
.8.15, -
(...
) ...
: ...
- ...
= 30...100 L = 150...1500 ;
= 150...250 L = 4000...20000 .

8.5.4.

r

. .

 $\varphi(r) = -\rho \int_{r}^{\infty} j dr \tag{8.11}$

φ

U

φ(r)

-

, . . -

$$\varphi = \varphi(\mathbf{r}) + \mathbf{U} \quad . \tag{8.12}$$

U

$$(=0,05...0,5$$
 \cdot ²).

-

(8.11) (8.10) - $R = \phi(r) / I = \rho / (2\pi r)$. (8.13)

$$R = \rho / (2\pi L) \ln (2L / d\sqrt{(4 h + 3L) / (4 h + L)}); \quad (8.14)$$

$$R = \rho / (2\pi L) \ln(L^2 / (hd)), \qquad (8.15)$$

,

 $\begin{array}{ccc} L - & ; h - & ; d - \\ & d <\!\! <\!\! L, h <\!\! <\!\! L. \end{array}$

•

:

,

.8.17

R (8.14) (8.15).

-

•

".

(R)

6

,,

_

8.6.2.

,

•

,

"

$$R = R / n \qquad (8.16)$$

$$F - \qquad ; R - \qquad ;$$

dC /dn = 0,

$$n = I \sqrt{8,76 F R} / (k \eta).$$
 (8.19)
(n)
, ...
(8.19) -

•

,

n = 0,21 i $\sqrt{\rho}$, (8.20)

0,21	\sim		
8.6.4.	nes26.		
	G = qIT		(T) (I).
		(n)	(-).

$$n = q I T / (G \eta),$$
 (8.21)

q - (. .8.1); G - , / ; $\eta = 0,4...0,6$ -

$$\begin{array}{cccc}
I = 10 \\
-2 & G = 12 \\
q = 0,2
\end{array}$$

$$/(\cdot) \dots \eta = 0,5.$$
(8.21)

$$n = 0,2 \cdot 10 \cdot 15 / (12 \cdot 0,5) = 5 \dots$$

$$(n = 5) \dots (n = 6).$$

$$\cdot \dots (n = 1) \dots (n = 1) \cdot F \cdot R / n = 10 \cdot 1,4 \cdot 3,6 / 5 = 10 \dots (n = 1).$$

$$\cdot \dots (n = 1).$$

$$\cdot \dots (n = 5, \dots U = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 5, \dots U = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 5, \dots U = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 5, \dots U = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 5, \dots U = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 5, \dots U = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 5, \dots U = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 5, \dots U = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 5, \dots U = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40, \dots, (n = 50) (p = 10, \dots)$$

$$\cdot \dots (p = 40) \dots (p = 10) \dots (p = 1$$

•

8.7.

				2	
			20	2,5	
	90		30		_
	· ,				2
	$I = 50 \dots 100$			9512	20^{2} ,
••	40 .	,			
	,		U = 12		
	, , , I	, L = 100 ,	I = 5	0,	
	,		$S = 16^{-3}$	= 48 ² .	-
	2.02	•	5		-
	$\rho_{\rm Al} = 0.03$ · · · 2/	0			
	R = 0.03 L / S =	0,03 · 100 / 4	18 = 0,06	•	
		and			
	U = IR =	= 50 · 0,06 ≅	3,		
	NN NN			,	
	U = 48 -			(8.22)	- U =
44	$(U \cong 1 \qquad \Delta U = 0).$			(0.22),	0 -
		30%	15 ,		-
		- 7	9	•	
		2	• •		

.8.2, •

•

•

•

	8.2
	_
,	, 2
012	4
1218	6
1825	10
2535	16
3550	25
50100	35

_

-

.8.18. 1- ; 2- ; 3- ; 4- ; 5- -; 6- ; 7- ; 8-

•

:

_

•

8.7.4.

,

7.402-5 "

-10 -50, .8.3.

,

,

,

,,

•

,

$$\mathbf{Q}=\mathbf{Q}^{\cdot}\boldsymbol{\eta},$$

_

,	0 < 0	η.		
(T),	Q < Q,	(2.7),		, -
)	(I,)	(T,)		(G,
		$T = QG\eta / I.$		(9.2)
			$= U - U_a$	-
	$.9.1, , \Delta U ;;$; $\Delta U - $	$U > 0.$ $U > 0.$ $U = U - \Delta U ;$ $U = U + \Delta U ;$,	- , - - (9.3)
U,U	_		-	-
•	U			-

-

 $(U < U _{.min}),$

,

•

".

,

•

-

_

,

"

_

.9.1).

•

,

,

(

_

-

			-	6	-	
	,	-2,36	-1,66	-0,76	-1,18	-0,44
.9.1	.9.2	.9.4	NN. ene		,	

9.2

, .

-	, %					%	,	
	Al	Zn	Mn	Fe	Cu	Ni	Si	Ti
16	7,59	23	0,150,5	0,03	0,15	0,01	0,2	-
M 4	57	23	0,150,5	0,003	0,004	0,001	0,05	-
1	57	24	0,020,5	0,003	0,004	0,001	0,04	0,04

•

• •

,

9.2.

_									
-				%	,				
	Zn	Mg	Sn	Zr	Fe	Cu	Si		
2	0,40,8	-	-	-	0,1	0,01	0,1		
3	46	-	-	0,0010,1	0,1	0,01	0,1		
4	46	0,51,0	0,050,1	-	0,1	0,01	0,1		
			ene.				9.4		

-				%	,			
	Al	Mg	Mn	Ti	Si	Fe	Cu	Pb
1	0,40,8	-	-	-	-	0,001	0,001	0,005
2	0,50,7	0,10,3	0,10,3	-	-	0,004	0,001	0,005
3	0,20,6	-	-	0,005	0,005	0,004	0,001	0,005
				.0,1	.0,1			

,

. , (η) 10...20%

•

. (99,995%)

-

55%.

,

9.5	

,

,

, U, ()	- , Q , · /	, η ,%	- , , /(·)
-1,5	1400	60	7,2
-1,1	2600	85	3,9
-1,1	790	95	12,6

$\mathbf{\Omega}$	\mathbf{a}	\mathbf{a}	
9	.)	.2.	

3.9.3,

,

.9.6

•

•

				20.			9.6
ρ,				0			
	,	-	- 0	Na_2SO_4 ,	,	-	Na_2SO_4 ,
	%	,%	,%	%	%	,%	%
< 20	65	15	15	5	25	75	-
	25	75	-	-	50	45	5
20100	70	10	15	5	75	20	5
	75	20	-	10	-	-	-
>100	65	10	10	15	_	_	-
	25	50	-	25	-	-	-

,

,

-26.10

_

,

_

•

 $(CaSO_4 H_2O)$

•

$$(Na_2SO_4 \cdot 10H_2O)$$

.9.6.

$$\rho_a = 0, 5...1, 5$$

•

.9.4,

,

•

, I = 0,2 . ,

9.4.2.

",

=2 "

9.4.3.

I = U / R = 0,6 /
$$(0,4\rho) = 1,5/\rho$$
, . (9.4)

. . .

1

•

$$(I_{\Sigma})$$

-

_

-j

--

(n)
$$I_{\Sigma} = j S_{\Sigma},$$
 (9.5)

 S_{Σ} -

,

$$\mathbf{n} = \mathbf{I}_{\Sigma} / \mathbf{I} \quad . \tag{9.6}$$

.9.5
$$d = 100$$

, ()
 $U = U = -0.75$

1.

, , 231

= 100

_

R

.

20

2.

,

-

•

I = 0,112

•

,

_

.9.5				,	•
,	6-				•
.9.7	2				
-				,	,
, - 2 ,		600	•	- 40 ,	- 20

- 20 · . - 25

:

9.7

_

,

-

				2	9.7
-	-		-6.	,	
-			2 -		-
-	,		es.	-	
,			0		-
		4			
0	- 0,55	- 0,723	-1,107	-1,141	-0,845
10	- 0,55	-0,642	-0,849	-0,880	-0,643
20	- 0,55	- 0,630	-0,828	-0,853	-0,625
30	- 0,55	- 0,628	-0,849	-0,883	-0,644
40	- 0,55	- 0,647	-1,107	-1,156	-0,847

:

1) 2)

5

•

,

))

•

.9.8

•

,

(U₃)

	(y _a).	
:		(U ₁)

9		8
/	٠	U.

R = 25 ·					R = 250 ·			
y _a ,	U ₁ ,	U ₃ ,	y _a ,	U_1 ,	U ₃ ,	y _a ,	U ₁ ,	U ₃ ,
		В		В	В		В	В
1	-1,461	-0,717	8	-1,002	-0,865	0,5	-1,007	-0,824
2	-1,195	-0,800	10	-0,992	-0,870	1	-0,940	-0,846
3	-1,107	-0,828	15	-0,982	-0,877	2	-0,904	-0,855
4	-1,064	-0,842	20	-0,979	-0,879	3	-0,895	-0,860
5	-1,038	-0,851	50	-0,978	-0,880	5	-0,889	-0,866
6	-1,022	-0,857	∞	-0,978	-0,880	8	-0,879	-0,866
$y_a \ge 5$, $y_a = 5$, $y_a = 5$, $y_a = 1$,								

 $3 \le y_a \le 6$.

10.2.

- ; - ;

10.2.1.

,

(.10.2, 1)	
	U < U,	(10.1)

_

U ,U -

,

•

.

.10.2

,

$$(BA - E)j = J - B(\phi + \phi_{c}),$$
 (10.4)
 $U = R \quad j + U_{c} \quad .$

.

 $\varDelta L_{p.max} \!=\! 4000$.

$$\Delta L_{p.max} = (0, 1...0, 2) L_p, \qquad L_p -$$

100 .

-0,55 . 50 -60, -0,55 . - 20

11

:

. .

.

6

,

U,

.10.3,
$$I = 100A = const;$$

$$I_{10} = I_{11} = I_{10} = I$$

().
$$j = (1,176 - (-0,55)) /$$

0,1 . 2

,

v = 1,18 j = 20,2 /5 U = +0,0650,10.1

			$\boldsymbol{\rho}$
		2	-
NN		,U, ()
1	-0,127	-0,086	-0,312
2	0,065	0,100	-0,251
3	1,176	1,169	0,039
4	0,078	0,115	-0,243
5	-0,172	-0,113	-0,296
6	-0,515	-0,379	-0,310
7	-0,324	-0,359	-0,408
8	-0,566	-0,634	-0,521
9	-0,767	-0,795	-0,610
10	-0,927	-1,006	-0,838
11	-1,046	-1,260	-1,210
12	-1,124	-1,469	-1,419
13	-0,440	-0,272	-0,211
14	-0,234	-0,167	-0,308

1	N	γ
T	υ	• –

NN	-	, U ,	()
1	-1,33	-2,17	-0,57
2	-5,84	-7,50	-3,85
3	-3,08	-4,22	-1,71
4	-2,13	-3,17	-0,96
5	-1,39	-2,17	-0,57
6	-0,65	-1,20	-0,28
7	-0,07	-0,23	-0,09
8	0,40	0,64	0
9	0,78	1,41	0,02
10	1,07	2,10	0,03
11	1,28	2,74	0,03
12	2,28	4,70	0,21

.

=

1	Λ	2
	()	1
	•••	• • /

nn				nn			
-				-			
1	-1,132	-1,087	-1,393	9	-1,802	-1,826	-1,723
2	-1,168	-1,128	-1,577	10	-1,893	-1,969	-1,877
3	-0,85	-0,85	-2,141	11	-1,943	-2,154	-2,175
4	-1,190	-1,149	-1,607	12	-1,967	-2,308	-2,326
5	-1,125	-1,184	-1,453	13	-1,034	-0,864	-0,85
6	-1,398	-1,258	-1,259	14	-1,249	-1,179	-1,401
7	-1,490	-1,520	-1,662	15	-1,491	-1,341	-1,375
8	-1,669	-1,732	-1,707	Ι,	49,6	49,4	53,4

•

_

		6,						-
50 ·	,	2000						
	(.11.1):						
	1 -					•		
	2 -				•			
	3 -						•	
			=1	-	-7			-

11.

•

-

.11.1

•

				26.			11.1
-			ġ	<u> </u>			-
,	1	2	3	,	1	2	3
0	-2,500	-1,662	-2,458	700	-0,700	1,010-	-0,986
50	-0,986	-1,510	-1,703	800	-0,691	-0,975	-0,959
100	-0,862	-2,500	-1,442	900	-0,683	-0,948	-0,937
150	-0,815	-1,579	-1,319	1000	-0,676	-0,925	-0,918
200	-0,789	-2,500	-1,246	1100	-0,671	-0,906	-0,901
250	-0,772	-1,546	-1,195	1200	-0,666	-0,891	-0,887
300	-0,758	-2,500	-1,156	1300	-0,662	-0,878	-0,875
350	-0,747	-1,461	-1,124	1400	-0,658	-0,867	-0,865
400	-0,737	-2,183	-1,097	1500	-0,656	-0,859	-0,858
450	-0,730	-1,265	-1,073	1600	-0,654	-0,853	-0,853
500	-0,723	-1,147	-1,052	1700	-0,653	-0,850	-0,850
550	-0,716	-1,094	-1,033	1800	-0,653	-0,851	-0,851
600	-0,710	-1,059	-1,016	1900	-0,656	-0,859	-0,859
650	-0,705	-1,032	-1,000	1950	-0,685	-0,942	-0,943

11.1.2.

= - 5,33 .

,

,

,

,

,,

=2 "

11.1.3.

,

,

11.2

NN	,	$y = \infty$	y =1	y =7
1	0	-5,332	-2,819	-2,342
2	5	-4,816	-3,685	-2,537
3	10	-3,932	-3,435	-2,374
4	20	-2,783	-2,529	-1,868
5	40	-1,945	-1,797	-1,393
6	100	-1,400	-1,311	-1,067
7	200	-1,193	-1,126	-0,941
8	500	-1,005	-0,958	-0,827
9	1000	-0,873	-0,840	-0,747
10	2000	-0,865	-0,832	-0,742

,

$$\frac{3}{.11.2}$$

$$(y = \infty)$$

$$y = 7$$

•

, y = 1

200 - 50

•

,

- 6

, . .

0 -

•

,

•

.11.3. : :) I = 15A, $x_a = 0$, $y_a = 15$;) , 150 ²;) : I₁ = 15A, I₂ = 50A, $x_{a1} = 0$, $x_{a2} = 0$ ($_2 = 80$), $y_{a1} = y_{a2} = 20$.

1	1	\mathbf{a}
		-
1	T	.)

-

-

_

NN	-	.11.3				
-				2		
	, ,		00	$_{2}=0$	₂ =80	
1	0	-2,777	-1,334	-6,348	-2,651	
2	10	-2,051	-1,460	-4,374	-2,085	
3	20	-1,709	-1,204	-3,292	-1,875	
4	40	-1,411	-0,942	-2,121	-1,805	
5	80	-1,238	-0,790	-1,377	-2,616	
6	200	-1,100	-0,705	-0,959	-0,935	
7	500	-0,964	-0,662	-0,826	-0,857	
8	1000	-0,838	-0,635	-0,790	-0,783	
9	2000	-0,807	-0,640	-0,855	-0,797	
10	0	-3,480	-2,800	-6,929	-2,256	
11	10	-1,029	-1,090	-2,757	-1,192	
12	20	-0,726	-0,740	-1,746	-0,976	
13	40	-0,596	-0,647	-1,133	-0,919	
14	80	-0,545	-0,596	-0,857	-2,698	
15	100	-0,527	-0,571	-0,712	-0,599	
16	500	-0,529	-0,560	-0,639	-0,579	
17	1000	-0,538	-0,535	-0,595	-0,564	
18	2000	-0,552	-0,552	-0,567	-0,556	

,

(.11.3,),

.11.3,), .11.3, .1), (

11.2.2.

•

,

5

,

,

-

R

;

,,

(.11.4,)

1; -

-

2-

70

- (.11.4,) -
- (.11.4,).

•

- -7. .11.4

(=0)

,

1	1	.4
-	-	

•

,

,

,

5-

_

3-

,	1	2	3	4	5			
-20	-3.377	-2.332	-1.871	-1.779	-2.090			
0	-2,348	-1.354	-1.141	-0.979	-1.450			
20	-3.319	-2.282	-1.826	-1.738	-2.053			
40	-3.314	-2.325	-1.855	-1.719	-1.867			

:

•

,

!

,,

"

 $(\Delta U_1 < 0);$

:

2)

1)

•

 $(\Delta U_2 > 0);$

,

$$\Delta U = \Delta U_1 + \Delta U_2 + \Delta U_3.$$

$$- (\Delta U > 0),$$

$$\Delta U \qquad .$$

,

,

11.2.3.

0,5

<u> 6</u> .11.5

- 0,5

.11.5
- I = 15
,
$$y_a = 40$$
.

.11.5.

1	1	_

-

nn	х,	U, B	nn	Х,	U,B	nn	у,	U,B
9	0	-0,432	1	0	-0,923	2	0,25	-0,870
10	0,5	-0,442	16	0,5	-0,961	3	0,5	-0,869
11	1	-0,455	17	1	-0,978	4	0,75	-0,867
12	3	-0,484	18	3	-1,004	5	1,5	-0,863
13	10	-0,519	19	10	-1,040	6	3	-0,859
14	30	-0,548	20	30	-1,076	7	10	-0,862
15	100	-0,585	21	100	-1,140			
			22	300	-2,136			

,

,

(

9...14

(.22)

$$(U_{\text{IMEX}} = -2.5), 2.3 \quad 4 - ... -0.82$$

$$2. \quad -0.82$$

$$2. \quad -2 \quad ... -1 \quad ... -2 \quad ... -2 \quad ... -1 \quad ... -2 \quad ... -2 \quad ... -1 \quad ... -2 \quad ... -2 \quad ... -1 \quad ... -2 \quad ... -2 \quad ... -1 \quad ... -2 \quad ... -2 \quad ... -1 \quad ... -2 \quad ... -2$$

$$j_1 = 0.5 / (\pi dR) = 0.016 / ^2.$$

 $P_a = 0,5$

-

. 2

 $s = P_a / (\pi dR) = 0,016.$

$$v_1 = 1,18 j_1 / s = 1,18$$
 /

(...7),

-2,59

,

,

(

).

_

.

(.15)

11.6

Nn	Х,	у,	U,B	Nn	Х,	у,	U,B		
1	0	0	0,021 0 0 0		0	-1,620			
2	1	1	-0,021	10	1	0	-1,598		
3	3	3	-0,088	11	3	0	-1,568		
4	10	10	-0,195	12	10	0	-1,533		
5	30	30	-0,338	13	30	0	-1,523		
6	70	70	-0,855	14	60	0	-1,550		
7	100	100	-2,066	15	200	0	-1,788		
8	130	130	-0,608						
9	250	130	-0,318						
9 250 130 -0,318 11.3. mm. enesses									

,

,

,

,

)

,

(

$$Z_{u}' = Z_{u}'';$$
 (11.3)

$$j' R'' = I' Z'_{u};$$
 (11.5)
 $j'' R'' = I'' Z''_{u}.$

 $\Delta U' = \Delta U'',$

-

-

.11.7.

() ().

2,5 %.

,

-

,

 Z_{u}

:

	, 8×8 , ,
4-	-20·*
	enes
11.3.2.	, NN.

,

,

•

,

, $I = \Delta U / Z_u$, U = -0.85, U = -0.85

9 .11.8). (- 200 6 , . 2 , - 3000 - 100 - 20 , $Z_u = 0,183$, .11.7, . • L = 45 .11.7, = 50 1 , d = 1,4 . 2 R . Z_u - 17, 1%. - 4. 1-8 .11.7. 1. --2.5 < U < -0.85, _ 8, б) a) 13 12 12 3 4... 8 5 x Г2 14 $\Gamma 1$.9 10 2 111

 $|_{z}$

9...11

,

278

11.7

nn -	х,				- ,	U , ,
		1	2	3	4	5
1	0	-0,777	-0,851	-0,863	-1,010	-0,850
2	5	-0,997	-1,144	-0,863	-1,013	-1,146
3	15	-1,063	-1,231	-0,864	-1,018	-1,242
4	50	-1,124	-1,313	-0,867	-1,041	-1,360
5	150	-1,171	-1,375	-0,875	-1,105	-1,520
6	500	-1,261	-1,495	-0,910	-0,929	-1,208
7	1000	-1,422	-1,708	-0,982	-0,858	-1,083
8	2000	-2,500	-3,141	-1,493	-0,850	-1,070
C	ĊК,	17,9	23,8	8,5	6,9	13.1

2.

_

CK, 17,9 23,8 8, , 8 (= 2000), $= 0 U_{.min} = -0.85,$ I = 17.9 I = 23.8

3.

I = 8,5

5).

4.

,

5.

,

4,

(

,

R.

285

12.3.

12.3.1.

•

= 2...4 · 2

_

, ... (. . 6).
,
...
$$\Delta U, B$$

 $\frac{\Delta U, B}{\frac{1}{200400}} \frac{\Delta U_{K}}{\frac{200400}{600}} \frac{\Delta U_{K}}{\frac{1}{200400}}$
.12.1.
.12.1.

12.3.3.

Ua	.12.1	,		= 5	$j = 200$ $\Delta U_a = 1$	/ 2	-
,		:			-		-

,

= 0,1...0,5 $\cdot {}^{2},$

> 5 ^{· 2}.

$$d = \eta n d \quad , \tag{12.2}$$

η-		,		-
	:	$n = 2 \eta = 0,9,$	$n = 3 \eta = 0.88,$	$n=4$ $\eta =$
0,85.				
	,	()	-
(\mathbf{R})				

$$(\varphi = -0,4...-0,6) = var, P = 2 ...0,2 \cdot {}^{2} = var),$$

, $(\varphi = -0,2, P = 2 \cdot {}^{2}).$
 $\Delta L = 0,5, -\Delta L = 1...3$.

:

0...0,5 ,

•

•

1,10,19 28

,

 $\phi = -0,2$ (-

•

,

)
$$\phi = -0.6$$
 (

,

.12.1.

v_{max}

).

, : · ²), , $\rightarrow 0,2$

 (v_{max}) .

12.A

,

-	. 2	φ,	U,	j, / ²	$j_{\text{max}},$	v _{max} , /
1	2	-0,4	-0,313	41,4	414,0	0,497
2	0,5	-0,5	-0,456	81,2	202,5	0,244
3	0,2	-0,6	-0,587	125,8	125,8	0,151
, mm enest (j).						

<u>2</u>. 9,18,27 36 (.12.2). 1, • -, 20% = 2 • • , . 2 $\phi = -0,4$ $v_{max} = 0,611$ $v_{max} = 0,497$ 9,18,27,36; / _ 1,10,19,28. /

.12.2

<u>3</u>.

,

,

$$(1...9).$$

,
 $(= 2 ^{\cdot 2}, \phi = -0.4).$

,

$$j / j_{max} = 0, 1.$$

_

,

,

12.2

nn -	Z,	U, B	j, / ²	j_{max} , / 2	v _{max} , /
1	0	-0,321	38,2	382	0,458
2	0,5	-0,307	44,5	445	0,535
• • •)*	
8	9,5	-0,307	44,5	445	0,535
9	10	-0,295	50,8	508	0,611
N.C.					

,

"

9

?

 $v_{max} = 0,573$ / - 1; $v_{max} = 0,458$ / - 1...9.

«

•

-7

-

,

,

,

,,

.12.2,
$$(\varphi) = 0$$

, $(\varphi) = 0$
, $(\varphi = 0)$

n -

 $R = R \quad Z / Z = 22,04 / 0,888 = 4,6$

 $R = 2 \quad \cdot ^2 -$ R , = 4,6 . 2 -5. R = 4,6 \cdot ². I = 0,318-0,89-0,85 .2 - 0,04 , 5%. 6. (12.3), . . R R = 4,6 $^{-2}$ Z = (0,89 - 0,2) / 0,318 = 2,17 . $= R \quad Z / Z = 4,62,04 / 2,17 = 4,34$. 2 R www.enes26. 2%, R 7. -, 300×300 4-20 , t = 3 : d = 300 , R = 4,34. 2 , , 8. , 50×24 8 , (). ,

I = 22,44 .

 $\varphi = -0,2$

:

,

,

•

•

n -

-

,

,

$$j = -1/\rho \partial \phi /\partial n,$$
 (12.6)
 $n (.12.5).$
 $(12.5) (12.6),$
 $\phi - (R /\rho) \partial \phi /\partial n = \phi - \phi .$ (12.7)
.

•

-

$$|\phi() - (R()/\rho) \partial \phi()/\partial n|_{L} = \phi() - \phi();$$
 (12.8)

$$\phi = \begin{cases} \phi & \in L \\ \phi & \in L \end{cases} \quad L = L + L ;$$

L,L -

; φ,φ-

$$(\varphi) \qquad (\partial \varphi / \partial n) = (\partial \varphi (-) / \partial n)_0 \pm \pi \mu (-), \qquad (12.10)$$

-

(12.9)

,

$$\partial / \partial n(\ln (1 / r_{MQ})) = -\cos \psi / r_{MQ},$$
 (12.11)

 $\cos\psi$

,

$$\cos \psi = -r_{MQ} / d$$
. (12.12)

:

-

$$\left(\partial \varphi ()/\partial \mathbf{n}\right)_0 = \rho/\pi d \int_{\mathbf{L}} \mu(\mathbf{Q}) d\mathbf{l}_{\mathbf{Q}}.$$
(12.13)

R
$$\mu() + \int_{L} \mu(Q) K(M, Q) dl_{Q} = \varphi - \varphi$$
, (12.14)

K(M,Q) =
$$\rho/\pi \ln(1/r_{MQ}) - R/(\pi d)$$
 -

(12.14) L

$$\Delta L = \pi d/N,$$
 -
(12.14)

1/p,

Ν

 $\mu() = \text{const.}$

N-

$$R_{.i} \mu_{i} + \Delta L \sum_{k=1}^{k=N} a_{ik} = \phi_{.i} - \phi_{.i}, \qquad (12.15)$$

$$a_{ik} = \int_{l_k}^{l_k + \Delta L} K(M_i, Q_k) dl_k , \qquad (12.15')$$

:

i-

Q,

,

(12.16)

 $\mu = \phi_{5}, \mu$ ={ a_{ik} }_{\tiny 1\dots N} $a_{ik} = \Delta L (\rho/\pi \ln(1/r_{ik}) - R_{i}/(\pi d)) + R_{i}\delta_i;$ $r_{ik}=0.5\sqrt{2} d\sqrt{1-\cos \theta_{ik}};$ $\theta_{ik} = 2\pi / N |i - k|;$ $\delta_i = 1 \qquad i = k;$ $\delta_i = 0$ $i \neq k$;

 $\phi = \{\phi_i\}_{1...N}$ -

$$\phi_{i} = \begin{cases} \phi_{.i} - \phi & i = 1...N_{a}; \\ \phi_{.i} - \phi & i = N_{a} + 1 ... N, \end{cases}$$
 (12.16')

. 2	В		/ 2	/ 2	/
2	-0,4	0,1	0,090	0,900	1,062
0,5	-0,5	0,4	0,417	1,042	1,230
0,2	-0,6	1	0,963	0,963	1,136

.12.3, -

•

_

φ_a,

•

•

		/
2	78	1,701
6	74	1,136
40	40	0,302
75	5	0,055

:

;

(N_a -)

:

www.enes26.iu

···· (φ) (φ).

:

,

,

U , U < -0.2

•

•

www.enes26.ru

1. ,1982.-304 . .: 2. ... ,1967. -128 . 3. , 1971. 4. • , 1984. -495 . . .: 5. N.enest ,1975.-.: 224 . 6. . .: , 1981.-270 . 7. , 1978. - 199 . .: 8. 9.602-89. . 1991. .: 9. .: , 1976.-472 . 10. : ./ . . _ .: , • , 1990. -303 . 11. . 153-39.4-091-01. .: -. . . ,2002.-202 . 12. / . 1995.-40: •••

13. • •, , 1990.-85 . 14. : • , 1977.- 67 . 15. ••• : , 1984. – 272 . .: 16. •, •• .: , 1979.-264 . 17. ••• • •• , 1968.-:, 99. 18. / , , 1987.-375 .: 19. , 1971.-250: 20. , 1961.-87 .: . 21. ,1968. -296 . .: 21. . 1984. – 400 . 21. . 1962. – 289 . • 22. , 1987.-97 .: 23. . ,1979.-188 . . .: 24. ... 1991. 25. / , 1980.-251 : . . . • . . • 26.

,

-39.10-004-99. .2000.-« ». .: 50. 26. •• •• • .: , • 1980. – 536 . 27. .: ,1982. -176 . 28. , 1984.-208 . • . 29. , 1972. -120 . .: 30. .: , 1988.-136 . 31. .: • , 1980.-438 32. •• , 1979.-395 N.enest . 33. / .1997.-118 34. / . , 1991.-221 .: , 35. _ . .: . 1963. -238 . 35. .1967.-248 .: • 36. , 1983.-344 . 37. , 1982.-52 . .: 38. -//

. .- .: , 1985.

39. . . // , 1989. .13-19. 40. . /. .: .6.04.88. 1532- -137 . 41. .: . . , 1960. 42. 25812-83. 1983. 43. , 1989.-456 . .: 44. • •• , 1958.-142 . .: 44. .: . 45. / : _ . , 1988.-245